Alluxio Community Day IV


Join fellow Alluxio community users live to learn how they are solving complex data access challenges. Hear Alluxio users from Facebook, TikTok, Intel, and more share their experiences and insights.


Slack Docker Pulls GitHub edit source

Data Transformations

With job service and catalog service, Alluxio can transform a table to a new table. If the table is not partitioned, then the transformation is run at table level. If the table is partitioned, then the transformation is run at partition level. The data of the original table is not modified, and the data of the new table is persisted in a new location managed by Alluxio. Once the transformation is done, Presto users can transparently query against the new data.

There are two kinds of supported transformations:

  1. coalesce the files so that each file is at least a certain size and there will be a maximum of certain number of files.
  2. convert CSV files to Parquet files

In Alluxio version 2.2.0 and later, the transformed data is always written in Parquet format.

Before running a transformation, you should first attach a database. The following command attaches the “default” database in Hive to Alluxio.

$ ${ALLUXIO_HOME}/bin/alluxio table attachdb hive thrift://localhost:9083 default

Transformations are invoked via the command-line interface. The following command coalesce files under each partition of table “test” to a maximum of 100 files. Additional details on the transform command can be found in the command line interface documentation.

$ ${ALLUXIO_HOME}/bin/alluxio table transform default test

After running the above command, you’ll see output like:

Started transformation job with job ID 1572296710137, you can monitor the status of the job with './bin/alluxio table transformStatus 1572296710137'.

Now follow the instruction in the output to monitor status of the transformation:

$ ${ALLUXIO_HOME}/bin/alluxio table transformStatus 1572296710137

It will show the status of the transformation job:

database: default
table: test
transformation: file.count.max=100
job ID: 1572296710137
job status: COMPLETED

Since the transformation has completed, you can run your Presto queries on the transformed table transparently.

You can find out the location of the transformed data with the following Presto query:

presto:default> select "$path" from test;

You should see output like: